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Abstract

Background: Respiratory viral infections are the most common trigger of acute exacerbations in patients with
allergic asthma. The anti-viral response of airway epithelial cells (AEC) may be impaired in asthmatics, while
cytokines produced by AEC may drive the inflammatory response. We investigated whether AEC cultured in the
presence of Th2 cytokines associated with an allergic environment exhibited altered responses to double-stranded
RNA, a virus-like stimulus.

Methods: We undertook preliminary studies using the MLE-12 cell line derived from mouse distal respiratory
epithelial cells, then confirmed and extended our findings using low-passage human AEC. Cells were cultured in
the absence or presence of the Th2 cytokines IL-4 and IL-13 for 48 hours, then stimulated with poly I:C for 4 hours.
Expression of relevant anti-viral response and cytokine genes was assessed by quantitative real-time PCR. Secretion
of cytokine proteins was assessed by immunoassay.

Results: Following stimulation with poly I:C, MLE-12 cells pre-treated with Th2 cytokines exhibited significantly
higher levels of expression of mRNA for the cytokine genes Cxcl10 and Cxcl11, as well as a trend towards increased
expression of Cxcl9 and Il6. Expression of anti-viral response genes was mostly unchanged, although Stat1, Ifit1 and
Ifitm3 were significantly increased in Th2 cytokine pre-treated cells. Human AEC pre-treated with IL-4 and IL-13,
then stimulated with poly I:C, similarly exhibited significantly higher expression of IL8, CXCL9, CXCL10, CXCL11 and
CCL5 genes. In parallel, there was significantly increased secretion of CXCL8 and CCL5, as well as a trend towards
increased secretion of CXCL10 and IL-6. Again, expression of anti-viral response genes was not decreased.
Rather, there was significantly enhanced expression of mRNA for type III interferons, RNA helicases and other
interferon-stimulated genes.

Conclusion: The Th2 cytokine environment appears to promote increased production of pro-inflammatory
chemokines by AEC in response to double-stranded RNA, which could help explain the exaggerated inflammatory
response to respiratory viral infection in allergic asthmatics. However, any impairment of anti-viral host defences in
asthmatics appears unlikely to be a consequence of Th2 cytokine-induced downregulation of the expression of viral
response genes by AEC.
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Background
Acute exacerbations of asthma are associated with worsen-
ing clinical manifestations requiring a change in treatment
strategy [1]. They are the main reason for hospitalisation
and the major source of health care costs in asthma [2].
Exacerbations are frequently related to respiratory viral in-
fections, most commonly with human rhinovirus (RV) [3].
Furthermore, asthmatics may develop more severe and
longer-lasting RV infections [4,5].
The airway epithelium is a key player in acute exacer-

bations of asthma. Not only is it the target of most re-
spiratory viral infections, but it is also an important
source of pro-inflammatory cytokines [6]. Several inves-
tigators have suggested that one reason for the strong
link between exacerbations of asthma and viral infec-
tions is that in allergic asthmatics, innate responses to
viral infection are impaired. In vitro, there is consider-
able evidence of decreased production of interferon
(IFN)-α2, IFN-β1 and IFN-λ2/3 by airway epithelial cells
(AEC) from asthmatics, in response to stimulation with
double-stranded RNA (dsRNA) or with RV [7-11]. This
has been related to impaired toll-like receptor (TLR)
and helicase signalling [12]. It has also been suggested
that similar impairment is demonstrable in atopic indi-
viduals even without asthma [13], although this has not
been confirmed.
However, whether the impaired anti-viral cytokine re-

sponses translate as increased viral replication in cul-
tures of AEC from allergic asthmatics is much less clear.
Although various studies do suggest this [8,9,13], others
have disagreed [14,15]. Experimentally, Th2 cytokine
pre-treatment of AEC has been reported to increase sus-
ceptibility to infection [16,17] suggested to be related to
mucous metaplasia. Again, however, this is controversial,
as recent reports have demonstrated either no effect [18]
or even that pre-treatment of human AEC with interleu-
kin (IL)-4 and IL-13 was associated with resistance to in-
fection, related to decreased numbers of ciliated cells,
with equivalent effect on AEC from asthmatics or non-
asthmatics [19].
Another possible reason for the association between

viral infections and exacerbations of allergic asthma
might be that asthmatic AEC exhibit enhanced expres-
sion of pro-inflammatory cytokines in response to viral
infection. This has been demonstrated by experimental
stimulation with dsRNA, as well by direct infection with
viruses including RV [20-22]. Furthermore, when stimu-
lated with dsRNA, both asthmatic AEC and normal
AEC pre-treated with IL-4 have also been reported to
exhibit relatively increased expression of thymic stromal
lymphopoietin (TSLP) [10,23], a cytokine that can in-
duce and amplify Th2 responses.
Overall, however, there remains uncertainty about the

nature of the altered responses of AEC to respiratory
viral infection in allergic asthmatics, or what might be
the mechanism underlying such changes. To further in-
vestigate this, we cultured mouse and human AEC in
the presence of Th2 cytokines and stimulated them with
dsRNA, which is a TLR3 agonist that is also recognised
by the RNA helicase IFIH1 and mimics viral infection
[24,25]. We examined the effect of pre-treatment with
Th2 cytokines on the expression of innate and interferon-
stimulated anti-viral response genes, as well as of a range
of pro-inflammatory cytokines. Our results suggest that a
Th2 cytokine environment may promote increased pro-
duction of pro-inflammatory chemokines by AEC in re-
sponse to respiratory viral infection, but is unlikely to be
responsible for any impairment of anti-viral host defences
in asthmatics.

Methods
Culture of MLE-12 cells
Preliminary experiments used an SV40-transformed
mouse-derived AEC line designated MLE-12 (American
Type Culture Collection, Manassas, VA, USA). These
cells retain key morphological and functional character-
istics of distal airway epithelium [26]. MLE-12 cells were
grown in a 50:50 mix of Dulbecco’s Modified Eagle
Medium:Ham’s F-12 with 2% heat-inactivated fetal
bovine serum and other relevant supplements (L-glu-
tamine, transferrin, sodium selenite, hydrocortisone, β-
estradiol, insulin-like growth factor-1 and antibiotics) at
37°C in an atmosphere of 5% CO2. Cells were used be-
tween passage 2 and 8. To assess responses to poly I:C
and the effects of Th2 cytokine pre-treatment, MLE-12
cells were cultured in 25 cm2 flasks at 5×105/flask, in
media either with or without 20 ng/mL of mouse IL-4
and IL-13 (R&D Systems, Minneapolis, MN, USA) for
48 hours, of which the last 16 hours were in serum-free
medium. Cells were then stimulated with 10 μg/mL of
poly I:C (Invivogen, San Diego, CA, USA) for 4 hours
and total RNA was extracted using TriReagent (Sigma-
Aldrich) and stored at −80°C. Five independent experi-
ments were performed.

Culture of human bronchial epithelial AEC
Approval of all experiments with human lung tissues
was provided by the Ethics Review Committee of the
South West Sydney Area Health Service, Royal Prince
Alfred Hospital and the University of Sydney Human
Research Ethics Committee. Bronchial epithelial layers
were isolated from 4th-6th order bronchi from lung tis-
sue obtained from 5 patients undergoing lung resection
or transplantation (3 with interstitial lung disease, 1 with
emphysema, 1 with a neoplasm). Cells were maintained
and expanded in Ham’s F-12 with growth supplements
as previously described [27]. All experiments were per-
formed with cells at passage 2. AEC were seeded in 6-



Table 1 Relative expression by MLE-12 cells of mRNA for
chemokine, cytokine and interferon-stimulated genes

Medium+ Poly I:C Th2 pre-treatment + Poly I:C

Cxcl1 2.3 ± 0.3 2.1 ± 0.4

Cxcl9 99.0 ± 27.7 178.9 ± 52.7+

Cxcl10 46.2 ± 29.8 210.5 ± 61.0*

Cxcl11 8.6 ± 2.2 61.2 ± 10.8**

Ccl5 18.7 ± 2.0 26.8 ± 10.3

Il6 1.0 ± 0.4 2.1 ± 0.2+

Il33 2.3 ± 0.3 1.2 ± 0.2*

Tslp 0.5 ± 0.2 0.9 ± 0.4

Ddx58 1.2 ± 0.4 1.9 ± 0.7

Ddx60 3.5 ± 0.8 5.4 ± 1.2

Ifih1 2.8 ± 0.7 3.5 ± 1.7

Oasl1 10.4 ± 3.1 9.6 ± 3.8

Stat1 3.2 ± 1.9 139.8 ± 30.0**

Stat2 1.2 ± 0.5 1.9 ± 0.8

Ifit1 4.3 ± 0.8 20.4 ± 7.2*

Ifitm3 1.0 ± 0.5 5.6 ± 1.3*

MLE-12 cells stimulated with poly I:C for 4 hours following culture for 48
hours in either medium alone or medium containing IL-4 and IL-13. mRNA
expression shown as stimulation ratio (mean ± s.e.m.) relative to cells cultured
in medium alone. + 0.05 < p < 0.1; *p < 0.05; **p < 0.01 by ratio paired t-test,
n = 5 separate experiments.
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well plates at a density of 2×105/well in 2 ml BEGM
(Lonza, Basel, Switzerland) and incubated at 37°C in an
atmosphere of 5% CO2. After 16 hours, the medium was
changed and cells were cultured either with or without
20 ng/ml of human IL-4 (R&D Systems) and IL-13
(Peprotech, Rocky Hill, NJ) for 48 hours. AEC were then
stimulated with 10 μg/ml poly I:C (Sigma-Aldrich) for
4 hours. Culture supernatants were collected and stored
at −20°C, while cells were lysed in TriReagent and RNA
stored at −80°C.

Expression of mRNA for cytokines
Quantitative real-time PCR was used to assess the ex-
pression of relevant genes, with detection of amplified
products using SYBR green (BioLine, Tauton, MA,
USA). Primers were designed in-house or sourced from
published articles. Reactions were performed using a
Roche LightCycler 480 (Roche Diagnostics, Indianapolis,
IN, USA), with gene expression normalised to the
housekeeping-gene hypoxanthine-guanine phosphoribo-
syltransferase (HPRT). Each sample was assessed in
triplicate.

Protein immunoassays
For a limited subset of cytokines (CXCL8, CXCL10, CCL5
and IL-6) the concentrations of protein in the super-
natants were determined using enzyme-linked immuno-
assays (R&D Systems) according to the manufacturer’s
instructions. Each sample was assessed in duplicate.

Statistical analysis
Data are presented either as arithmetic means ± s.e.m.
(MLE-12 cells) or as before-after plots for individual
samples (human AEC). To compare the response of Th2
cytokine pre-treated cells, both unstimulated and follow-
ing stimulation with poly I:C, changes were assessed by
a ratio paired t-test, to cater for baseline variability. The
software package GraphPad Prism 6.03 (GraphPad Soft-
ware, San Diego, CA, USA) was used for data analysis
and preparation of graphs.

Results
MLE-12 cells
Preliminary experiments using these cells revealed that
mRNA expression for the chemokine genes Cxcl10 and
Cxcl11 was significantly increased in cells that had been
pre-treated with Th2 cytokines and then stimulated with
poly I:C (Table 1). There was also a trend towards in-
creased expression of Cxcl9 and of the pro-inflammatory
cytokine Il6. In contrast, levels of expression of the Th2-
promoting cytokine Il33 were significantly decreased in
cells that had been pre-treated with Th2 cytokines and
then stimulated with poly I:C, while those of Tslp were
unchanged. Unexpectedly, levels of expression of major
anti-viral response genes, including the RNA helicases
Ddx58 (also known as RIG-I), Ddx60 and Ifih1 (also
known as MDA-5) were mostly unchanged, while the
interferon-induced genes Stat1, Ifit1 and Ifitm3 were
significantly increased in cells pre-treated with Th2
cytokines.

Human AEC
To confirm and extend these findings, we undertook a
comprehensive assessment of the expression of relevant
innate interferons, interferon-stimulated anti-viral response
genes and pro-inflammatory cytokines by human AEC. As
a first step, we showed that cells cultured in the presence
of IL-4 and IL-13 exhibited a 2.5-fold increase in expres-
sion of mRNA for periostin (expression relative to HPRT
0.61 ± 0.14 in media vs. 1.56 ± 0.28 in the presence of IL-4/
13, p < 0.05, unpaired t-test), establishing that these cells
exhibited a phenotypic change typical of a Th2 environ-
ment [28]. Next, we examined the expression of a variety
of chemokines and pro-inflammatory cytokines, some
of which are known to be interferon-stimulated genes
[29]. As shown in Figure 1, baseline levels of expression
of the chemokines IL8, CXCL10, CXCL11 and CCL5
were all significantly higher in cells that had been pre-
treated with Th2 cytokines. Furthermore, there was sig-
nificantly increased expression of IL8, CXCL9, CXCL10,
CXCL11 and CCL5 in cells that were then stimulated



Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 Before-and-after plots showing effects of prior exposure to Th2 cytokines on the expression of mRNA for chemokine and
cytokine genes by human AEC at baseline (left) or following stimulation with poly I:C (right). Data are mean values for individual patients,
showing expression relative to the housekeeping gene HPRT. Note the logarithmic y-axis. p values for significant differences between cells
cultured in media IL-4 and IL-13 were assessed by ratio paired t-test.
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with poly I:C. However, no such increases were observed
for IL6. Expression of the Th2-promoting cytokine IL33
was significantly decreased, while there was a trend to-
wards increased expression of TSLP.
For a limited subset of cytokines, results were confirmed

by assessing cytokine protein in culture supernatants, as
shown in Figure 2. Interestingly, not only were levels of
CXCL8 and CCL5 protein significantly increased, together
with a trend towards an increase in levels of CXCL10, but
in addition there was also a trend towards elevated levels
of IL-6 protein.
We then examined the expression of innate inter-

ferons known to be associated with an anti-viral re-
sponse. Figure 3 demonstrates that expression of IFNB1
and IFNB2 by AEC in response to poly I:C was unchanged
in cells that had been pre-treated with Th2 cytokines.
Figure 2 Before-and-after plots showing effects of prior exposure to
proteins by human AEC at baseline (left) or following stimulation wit
p values for differences between cells cultured in media with or without IL
However, there was a modest but statistically significant
increase in the expression of both IFNL1 and IFNL2/3.
Expression of a range of interferon-stimulated anti-viral

response genes in cells at baseline or after stimulation
with poly I:C is presented in Figure 4. The RNA heli-
cases DDX58, DDX60 and IFIH1 were all significantly
up-regulated in cells that had been pre-treated with Th2
cytokines and stimulated with poly I:C, while DDX58
and IFIH1 was also significantly increased at baseline. In
addition, there was a trend towards increased expression
of the anti-viral transmembrane protein IFITM3. Expres-
sion of the transcription factors STAT1 and STAT2 was sig-
nificantly higher, and there was a trend towards increased
expression of the transcription factor regulator OASL1.
However, there was no change in expression of the tran-
scription factor IRF3.
Th2 cytokines on the secretion of chemokine and cytokine
h poly I:C (right). Data are mean values for individual patients.
-4 and IL-13 were assessed by ratio paired t-test.



Figure 3 Before-and-after plots showing effects of prior exposure to Th2 cytokines on the expression of mRNA for type I and type
III interferon genes by human AEC at baseline (left) or following stimulation with poly I:C (right). Data are mean values for individual
patients, showing expression relative to the housekeeping gene HPRT. p values for significant differences between cells cultured in media with or
without IL-4 and IL-13 were assessed by ratio paired t-test.
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Discussion
In this study, we investigated aspects of the relationship
between respiratory viral infections and acute exacerba-
tions of allergic asthma. Using exposure to dsRNA as a
surrogate for viral infection, we assessed the effects of
prior exposure to Th2 cytokines on the expression by
AEC of anti-viral host defence genes including RNA
helicases and interferons; signalling pathways that are
up-regulated by innate interferons; and various cytokines
able to promote an inflammatory response or amplify a
Th2 response. In preliminary work using mouse MLE-12
cells, an immortalised line derived from distal AEC, we
showed that expression of several chemokines and pro-
inflammatory cytokines was significantly up-regulated in
cells that had been pre-treated with Th2 cytokines and
then stimulated with poly I:C, while expression of major
anti-viral response genes was either unchanged or was
also significantly increased. This was unexpected and we
therefore undertook further work using low-passage hu-
man bronchial epithelial cells.
The primary response of AEC to viral infection is the

production of interferons, mostly interferon-β1 and the
various type III interferons (IFN-λ1/2/3) [30]. Because
the magnitude of induction of interferons in AEC is rela-
tively low compared to blood leucocytes [30], detection
of secreted interferon proteins is difficult, so we assessed
expression of these genes by quantitative real-time PCR.
We found that in human AEC which had been pre-
treated with Th2 cytokines, expression of β interferons
was unchanged, while λ interferons exhibited modest but
statistically significant up-regulation.
The innate interferons in turn stimulate expression of

numerous other genes [29,31], including not only anti-
viral response genes but also chemokines and other pro-
inflammatory cytokines, which are secreted at levels that
readily permit detection by enzyme immunoassay. Thus
we were able to assess the latter in terms of both mRNA
expression and protein concentrations in supernatants
of AEC in culture. We noted increased expression and
secretion of various chemokines, including the neutrophil
chemoattractant CXCL8, the T cell chemoattractants
CXCL9, CXCL10 and CXCL11, as well as the T cell/eo-
sinophil chemoattractant CCL5. These results were largely
similar to the data for MLE-12 cells. Although we ob-
served no change in expression of the IL6 gene, which is
consistent with previously reported data [7], there was



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Before-and-after plots showing effects of prior exposure to Th2 cytokines on the expression of mRNA for anti-viral response
genes by human AEC at baseline (left) or following stimulation with poly I:C (right). Data are mean values for individual patients, showing
expression relative to the housekeeping gene HPRT. p values for differences between cells cultured in media with or without IL-4 and IL-13 were
assessed by ratio paired t-test.
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some increase in levels of IL-6 protein, possibly indicating
secretion of pre-formed cytokine. Interestingly, we observed
decreased expression of mRNA for the Th2-promoting
cytokine IL-33, again analogous to the finding in MLE-
12 cells, while expression of TSLP was increased.
Some of the increases in cytokine protein concentrations

were not statistically significant, which may have been be-
cause culture supernatants were collected at 4 hours after
stimulation, a relatively early time point for assessment of
secretion of cytokine proteins. Ideally, we would have
wished to perform parallel experiments in which cells
were collected at 4 hours after stimulation for assess-
ment of mRNA and at 16–24 hours for assessment of
protein, but this was not feasible because of the limited
availability of human AEC.
With respect to other genes involved in anti-viral de-

fence, we demonstrated up-regulation of the expression
of RNA helicases and of the transcription factors STAT1
and STAT2, as well as of other interferon-stimulated
genes. However, it was noteworthy that there was no
change in the expression of IRF3, even though this tran-
scription factor is believed to be critically involved in the
anti-viral response and regulates IFNB, CXCL9, CXCL10
and CCL5 [32].
The relationship between respiratory viral infections

and asthma is complex, and the underlying mechanisms
of cause and effect remain incompletely defined and con-
troversial. For example, there is little doubt that wheezing
lower respiratory viral infections in early life are associated
with the development of allergic asthma in childhood
[33,34], but it has been suggested that whereas allergic
sensitisation increases the risk of wheezing, the converse
is not true [35]. Alternatively, some investigators have
speculated that development of severe respiratory viral in-
fections is simply an indicator of a genetic predisposition
to asthma [36]. Similarly, there is agreement that exacer-
bations of allergic asthma are most commonly a conse-
quence of viral infections, especially with RV [37-39].
However, there is considerable debate about the extent to
which an impaired host response might contribute to the
development of these infections, or to the severity of in-
fections, or whether the inflammatory response to infec-
tion might be significantly different in asthmatics [40].
Our finding of enhanced expression and secretion of a

variety of chemokines by AEC pre-treated with Th2 cy-
tokines is consistent with the notion that the allergic en-
vironment promotes increased inflammation in response
to respiratory viral infection. Our results are concordant
with a very recently published study of the response of hu-
man AEC to RV, which also demonstrated that cells pre-
treated with Th2 cytokines expressed higher levels of the
chemokines CXCL8 and CXCL10, independent of any
change in viral replication [18]. Increased production of
the major neutrophil chemoattractant CXCL8 might help
to explain the neutrophilic response to respiratory viral
infection observed in the sputum of asthmatics [41,42].
Increased production of other chemokines might amp-
lify the recruitment of other cell types as well. In this
context, it is noteworthy that CXCL10 could be an im-
portant pro-inflammatory mediator in asthmatic exacer-
bations, as it is relatively resistant to suppression by
glucocorticosteroids [43].
With respect to epithelial cell-derived Th2-promoting

cytokines, the demonstration of a trend towards increased
expression of the TSLP gene is consistent with earlier evi-
dence that pre-treatment of AEC with IL-4 induces en-
hanced production of TSLP following exposure to dsRNA
[23]. In contrast, decreased expression of IL-33 in AEC
pre-treated with Th2 cytokines is somewhat surprising.
IL-33 is potentially important in the pathogenesis of exac-
erbations of asthma [44,45]. Moreover, it could be released
from AEC in response to virus-induced injury (together
with other Th2-promoting cytokines such as IL-25 and
TSLP) and might thus help to drive airway inflammation
in acute exacerbations of allergic asthma [46]. In this
setting, because IL-33 behaves in many respects like a
damage-associated molecule or alarmin [47], it may be
regulated primarily via altered cytokine release, rather
than altered expression of mRNA.
Our observation that there was no diminution in the

expression of interferons and indeed an increase in the
expression of type III interferons contrasts with another
in vitro study, which indicated that treatment with IL-13
suppressed production of type III interferons in response
to dsRNA by a human AEC line [48]. This issue is per-
tinent, especially in the context of evidence that asth-
matics are more susceptible to develop lower respiratory
viral infections [4] and that their infections are of greater
severity [49]. Infections in asthmatics have also been re-
ported to persist for longer, although this is controver-
sial and the increase in RV-related illness may instead
be a result of re-infection [4,50-53]. Various studies
have suggested that impaired production of interferons
by AEC from asthmatics, and especially of type III inter-
ferons in those with severe asthma, may be an import-
ant predisposing factor and may influence the outcome
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of infection [7-10]. Moreover, a deficient type III inter-
feron response has been suggested to play a key role in
determining the severity of asthma exacerbations [8].
However, the evidence that interferon production by
AEC from asthmatics is impaired is by no means clear-
cut [40,54]. Indeed, it has been suggested that increased
levels of type III interferons may play a role in driving
virus-induced exacerbations of asthma [55]. Consistent
with this, there is no evidence of an increased viral load
associated with exacerbations [55,56].
Our results indicate that any impairment of interferon-

mediated defences of airway epithelium in asthmatics is
unlikely to be a direct effect of Th2 cytokines on AEC.
However, additional factors may operate in vivo. For ex-
ample, AEC recovered from severe asthmatics have in-
evitably been exposed to combinations of therapeutic
drugs [9] which are recognised to have suppressive ef-
fects on host anti-viral and inflammatory responses
[57,58]. Nevertheless, a recent study in an animal model
of chronic asthma suggests that long-term allergen chal-
lenge may be associated with a decrease in expression of
type I and type II interferons, as well as with borderline
changes in type III interferons [59]. Intriguingly, these
authors also reported decreased production of other
pro-inflammatory cytokines, such as IL-1β and IL-12, in
response to RV infection.
We recognise the inherent weaknesses of in vitro stud-

ies. Furthermore, our experiments utilised undifferentiated
immersion cultures of AEC rather than differentiated air-
liquid interface cultures. Notwithstanding these limita-
tions, however, we believe that our data shed new light on
the complex interplay between respiratory viral infections,
the host cytokine response, and acute inflammation of the
airways in exacerbations of allergic asthma.

Conclusions
Collectively, our results suggest that the Th2 cytokine
environment which prevails in allergic asthma could
promote increased production of pro-inflammatory me-
diators by AEC in response to respiratory viral infection,
but is unlikely to play a role in any impairment of anti-
viral host defences in asthmatics.
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